
Implementing A* and the Monte Carlo Localization
algorithm with text-to-speech technology in the

context of a food-delivery robot
Florian-Andrei Blanaru Andreea-Bianca Fraunhoffer Yuji Fukuta Rahul Gheewala Samuel Irsai

Abstract—Ordering food from a restaurant has become a
very common practice, especially when considering the current
circumstances, represented by the pandemic. Keeping clients in
touch with the restaurant, while also minimizing physical contact
between individuals and increasing the efficiency of the process
could be achieved by automating some of the tasks involved. Our
project proposes an implementation encompassing everything
from placing your order to delivering it. To do this, we use text-
to-speech technology, so a robot could speak to a customer and
take their order, a particle filter for localization, so the robot can
accurately self-localize on a given map, and A* for path-finding,
so it can compute (and follow) the optimal path to a customer’s
delivery address.

Index Terms—automating, text-to-speech, particle filter, A*

I. INTRODUCTION

The idea of automating tasks that are prevalent in the
service industry is not new[5], and the demand for this has
been steadily increasing since the pandemic began[3]. Limiting
unnecessary physical contact between people by replacing the
employee that would take a customer’s order with a robot,
as well as the delivery courier would prove to be advanta-
geous not only because it promotes healthy social distancing
practices, but also because the tasks would be executed more
efficiently. Our project would still retain relevance after the
pandemic, because the robot could work alongside human
employees during peak hours at the restaurant, for example.
The first task the robot should be capable of fulfilling is to
take an order from a customer. For this, we are using text-to-
speech technology; more specifically, the robot communicates
with the customer through spoken words, and allows the
customer the choice of responding either through keyboard
or voice input. The information relayed by the client (details
of their order such as sandwich fillings and type of drink, their
delivery address) are stored by the robot, allowing for future
use. Following that, the robot delivers the customer’s order
to the delivery address they specified earlier. This is achieved
by using the Monte Carlo Localization (MCL) algorithm[6],
as well as A*[1]. The robot figures out the optimal path
from its starting position on the map (in the restaurant), and
follows it. After dropping off the order, it either backtracks
to the restaurant, or delivers the other orders in its queue by
computing the optimal path to the other address, and so on.
Our joint implementation of both a localization and a path-
finding algorithm results in a robot that can efficiently and

autonomously navigate through a predefined static environ-
ment.

II. RELATED WORK

In terms of expanding on pre-existing scientific work, we
took great inspiration from research such as [2]. This pa-
per explains how with the use of Genetic, Artificial Neural
Networks and A* algorithms, it is achievable to move items
from one location to another in a dynamic environment
without collision. The paper provides the example of robots
transporting carry tools in an industrial environment. We as
a team thoroughly studied the report and found great value
in its contents, in particular the A* implementation as we
already had prior knowledge from our first-year AI module.
Additionally, the research explains how A* heuristics excels
in terms of time and speed when the size of this input is small.
Since we plan in designing a map for ROS, this requirement
would be satisfied. We imagined our delivery system to work
for small local restaurants. Whilst we appreciated the work,
we felt we could improve it by supplying the robot with a
dynamic voice input from the user, which we considered to be
our unique selling point. Although unsure if we can implement
a dynamic environment in the given timeframe, by using A*
we are able to keep this option open for the future. We also
decided to adapt the method of localization by using MCL
which we felt better suited our project style.

III. SYSTEM/FRAMEWORK DESCRIPTION

A. Text-to-speech functionality

The text-to-speech functionality is implemented in our
project through the SpeechRecognition, pyttsx3 and pyaudio
libraries. The get audio method processes the audio input
from the user and translates it into text. If the input is not
processable, the user will be prompted to speak again. The
take option method takes the resulting text and turns it into
the list ’words’, keeping each individual word as one element.
These two methods lie at the base of all the subsequent
methods, which follow a similar pattern: the user will be
prompted to choose from a set of options and speak their
answer; after the initial processing, the list containing the
split input will be parsed looking for certain keywords which
signals that a certain option has been picked. For example,
when choosing whether the user is a customer or an employee,
the algorithm is waiting for the presence of the keywords



’one’, ’first’, ’1st’ and ’customer’. When making a new order,
the customer will be asked if they want to order a drink (and, if
yes, to pick one from a selection of available drinks), and then
questions about the type of bread and filling their sandwich
should have. The end of this process is marked by the prompt
the user will receive after giving all the details about their
order, which will require them to type their address (A, B,
C or D, when considering the environment described by our
map). This user input will be transcribed in a text file which
will be used as reference for the goal coordinates for the A*
path-finding algorithm.

B. Localization using the Monte Carlo Localization algorithm

We have improved the performance of the particle filter we
had to implement for Assignment 1. A brief description of
how it works is as follows: the particle cloud is initialized
using the initialise particle cloud method, which, given an
initial pose guess, populates the particle cloud with particles,
i.e. with hypotheses about the actual pose of the robot.
update particle cloud updates the weights of the current parti-
cles by comparing the expected sensor data to the actual sensor
data, creates new particles based on the previous iteration of
particles with a high weight and discards the particles with
a low weight. In the end, a new pose estimate is chosen
through the method estimate pose, which returns the particle
with the highest weight. Our project makes us of a localization
algorithm, because it allows the robot to accurately follow the
path picked by A*. The initial pose will also serve as the
starting location for A*.

C. Path-finding using A*

We decided that our contribution and one of the main fea-
tures of our project is the implementation of an A* algorithm
in ROS. To begin with, the helper method fill nodes converts
every pixel in the image of the world map to a node, which
can be either traversable (drawn in white on the map), or
non-traversable (drawn in black), while fill valid neighbours
keeps track of every walkable neighbour of a given node.
The method a star takes two tuples as parameters: start(x,
y) and end(x’, y’) which represent the pixel coordinates of
the start and goal locations. The score of the start node is set
to 0 (in the beginning, every node on the map is initialized
with a very high score that will be reduced as the algorithm
progresses), and the node is added to the list of nodes to visit.
The main loop of the algorithm focuses on the size of the list
of nodes to visit. While it is greater than zero, the first node
will be popped (visited); if it is the end node, its coordinates
will be added to the list of nodes in the path, and then the
algorithm will backtrack through the visited nodes, adding the
new pair of coordinates to the front of the list, which will be
returned as the found path. If the current node is not the goal
node, the algorithm will compute the new scores of every valid
neighbour as the sum of the absolute values of the differences
between the x and y coordinates of the end and current nodes.
If the new score is smaller than the neighbour’s previous score,
its score is updated, the current node is added as its parent,

and it is added to the list of nodes to traverse according to
its score. The order in which the nodes are added is essential
to the algorithm, because the nodes to be visited first should
have the smallest score; otherwise, the algorithm would return
sub-optimal paths. A* is the algorithm we use in our project
to find the best path from the restaurant to a given delivery
address. To better visualize the path, we have added a helper
method show path image, which draws the map image pixels
corresponding to the generated path in red.

D. Integrating in ROS

We tie all these components together (and actually run
the robot) using two methods: run robot and localise mcl.
Run robot deals with the odometry readings, taking the A*
generated path as a parameter; first, for every pixel in the path,
it translates the image pixels to simulation coordinates using
calibration formulas. It also computes the difference between
the current coordinates of the robot and the coordinates of the
goal, as well as the angle to goal. The last step before moving
towards the goal is updating the robot’s orientation given its
angle, theta, by rotating at an acute angle, thus saving some
time. Localise mcl first waits for the robot to gather enough
sensor information to accurately localise itself by rotating in
place twice, and then feeds the estimated pose to the A* path-
finding algorithm, as the start coordinates.

IV. EXPERIMENTAL SETUP AND RESULTS

A. Testing the accuracy of our particle filter

During the experiments, three of the main features were
tested. The first hypothesis is that the robot localises correctly
in the provided map with a good estimated pose. The second
hypothesis is that the user will be able to interact with the robot
via text-to-speech recognition and via text input. The third
hypothesis evaluated is that the robot will be able to deliver the
order by using the shortest path calculated using A* algorithm.
For evaluating the localisation, a PNG map was created using
PowerPoint. In order to be used as a valid map in ROS, the
.YAML and .PGM files were generated by modifying [4]. After
15 robot moves the results were recorded both visually(fig. 1-
4) and in a table (table 1).

Fig. 1. The initialization of the MCL algorithm used in assignment 1

Our implementation of the MCL algorithm for the first
assignment did not work properly for most of the cases (figures
1 and 2), returning faulty results (table 1) or taking a lot of



Fig. 2. The faulty result of the MCL algorithm used in assignment 1

Fig. 3. The initialization of the improved MCL algorithm used in this project

time to localise the robot. Our improved MCL (figures 3 and
4) manages to localise the robot correctly (table 1) and in
a much shorter amount of time, compared to the previous
version. For the first MCL version, we observed an error
between the x values of the position of 2.98, and an error
of the orientation of 0.08, therefore a bad result overall. The
current MCL has shown error of the x value of 0.32 and
an orientation error of 0.25, which, as shown in the figures,
outlines a more effective implementation of this algorithm.
The differences between the two implementations lie in the
initial population of particles, and in the way we normalized
the weights of the particles. The first version used to allow
particles to appear in a polygon which overlapped the map,
whereas now we only let the particles spawn around the initial
pose guess. The weight normalization (dividing every weight
by the sum of every weight) was streamlined by storing the
sum of all of the particle weights in a variable before iterating
through the particles and normalizing them.

Fig. 4. The accurate localization of the improved algorithm used in this
project

B. Testing the accuracy of the text-to-speech assistant

For evaluating the interaction between the user and the robot
via text-to-speech, the script was tested against different audio
inputs from various people and microphones. The phrases to
be checked were generated randomly using [9]. The accuracy
of the voice interpretation was compared based on the output
from the robot and it is stated in the following table (fig. 2.0).
The time comparison between both methods was executed
using a stopwatch and different speed inputs. The interaction
via only text input worked every time the user added a valid
input. Although the accuracy of the text input is much higher
than the text-to-speech, the time differences are observed in
the table below (fig. 2.0).

Judging from our experimental results, we were surprised
at the accuracy scores and felt more confident in our existing
approach. We calculated using our results, the total average
accuracy for speech was 86.6% but for typing it was 99.6%
but the time costs were 4.02s and 12.11s respectively . We
found that despite providing a complex array of sentences,
the google speech recognition performed better than expected
and we felt it had potential for further improvements for the
purpose of our project. Given that the accuracy is relatively
high on most examples, we decided to go ahead with an
approach in which certain keywords are extracted from the
user to distinguish between different options. It is risky in the
sense that if this keyword is not picked up, the decision making
process would fail. But given the high average accuracy, we
felt the likeliness of this keyword being missed would not
be significant. Furthermore, we surround each case with a
try/except to ensure if a keyword is not recognized, the user
can continually attempt to provide input until the required
criterion is met. We as a group felt the addition of Speech-



TABLE I
THE ACCURACY AND THE SPEED RESULTS FOLLOWING THE TESTS

Fig. 5. The accurate localization of the improved algorithm used in this project

to-text was a critical feature to aid the user experience of our
project, and would help to enhance our project which could
have commercial applications in the future. Other reasons
included ease of use, as shown in our experimental results, we
found in all cases that using speech was significantly faster
than using text input. Although for speed there was a cost
in accuracy, we understood during the course of our project
that this was not essential. As long as the key points were
extracted from the information, the algorithm we implemented
did progress in the decision guiding progress.

C. Testing the functionality of the A* path-finding algorithm

For evaluating the third hypothesis, before testing it in
ROS, the implementation of the A* algorithm was tested
with various inputs for the starting waypoint and the ending
waypoint in the map. For a better analysis of the results,
an image with changed pixels(red coloured) based on the
generated path was generated and represented in the following
screenshots (fig. 6-9).

As observed in the images, the algorithm works very well
for the selected waypoints representing the starting point of
the robot and also the ending points which are the houses. It

Fig. 6. A* path generation for house A

successfully manages to come up with the best path for the
robot to follow.

When integrating A* in the MCL implementation on ROS,
we observed that the path-finding algorithm picks paths that
follow the outline of the non-walkable map pixels. This caused
the robot to hit an obstacle while trying to take sharp turns
and stop moving in the simulated environment, even though
the path was optimal (fig. 9)

Our fix for this issue was to check for non-walkable pixels
in the current pixel’s immediate neighbours; if there is a single



Fig. 7. A* path generation for house B

Fig. 8. A* path generation for house C

Fig. 9. A* path generation for house D

Fig. 10. The robot hitting an obstacle while following a path

obstacle anywhere in the desired interval, then the current
pixel itself is redefined as a non-walkable pixel, and A* is
required to recompute the trajectory of the path. This fix is in
the map a star method.

One other issue we encountered during development was
that our initial calculations for the translation from pixels
to simulated coordinates proved to return misleading results
which created a scenario where the robot would not success-
fully follow the path, sometimes leading it into a wall. We
resolved this problem by adapting the formula to the ROS
map simulated coordinates, which in the end, gave the robot a
higher efficiency in running through the actual path given by
A*.

V. CONCLUSIONS AND FUTURE WORK

We gave careful thought to what other additional features
our project could have benefitted from, or ways to polish the
features that were already implemented. An idea which we
consider is to implement everything in a dynamic environment,
as we saw in [2], rather than a static one. That is, ensure
that the robot is able to detect changes in the environment,
and reacts accordingly. Another idea to consider would be air
delivery. Delivery drones have already been implemented[7],
and we would be curious to try and tailor A* for airborne
conditions. In conclusion, our project has proposed an imple-
mentation of speech-to-text recognition technology, a particle
filter based on the MCL algorithm and A* heuristics. The robot
is able to take orders from customers and deliver them from
a restaurant, this would prove to be a helpful alternative to
human employees, especially in the context of the pandemic.

REFERENCES

[1] Hart, P. E.; Nilsson, N. J.; Raphael, B. (1968). ”A Formal Basis for
the Heuristic Determination of Minimum Cost Paths”. IEEE Trans-
actions on Systems Science and Cybernetics SSC4 4 (2): 100–107.
doi:10.1109/TSSC.1968.300136.

[2] R. Kala, A. Shukla, R. Tiwari, S. Roongta, R. R. Janghel (2009)
Mobile Robot Navigation Control in Moving Obstacle Environment
using Genetic Algorithm, Artificial Neural Networks and A* Algorithm,
Proceedings of the IEEE World Congress on Computer Science and
Information Engineering, Los Angeles/Anaheim, USA, pp 705-713

[3] Hobbs, J. E. (2021). Food supply chain resilience and the COVID-19
pandemic: What have we learned?. Can J Agr Econ. 2021; 69: 189–
196. https://doi.org/10.1111/cjag.12279

[4] Sperbeck, C. (2016). MakeROSMap source code (Ver-
sion 1.0) [Source Code].https://drive.google.com/file/d/
0B2AcDRX3bKLVdjhPU1B2UUNRaDA/view?resourcekey=
0-fKWCpCO1UiiQgNNGGzMlPA

[5] Ivanov, Stanislav Hristov and Ivanov, Stanislav Hristov and Webster,
Craig and Berezina, Katerina, Adoption of Robots and Service Automa-
tion by Tourism and Hospitality Companies (May 6, 2017). Revista
Turismo & Desenvolvimento, 27/28, 1501-1517., Available at SSRN:
https://ssrn.com/abstract=2964308

[6] Dieter Fox, Wolfram Burgard, Frank Dellaert, and Sebastian Thrun,
”Monte Carlo Localization: Efficient Position Estimation for Mobile
Robots.” Proc. of the Sixteenth National Conference on Artificial In-
telligence John Wiley & Sons Ltd, 1999.

[7] BBC News. 2021. Amazon makes first drone delivery. [online] Available
at: ¡https://www.bbc.co.uk/news/technology-38320067¿

[8] The team’s repository: https://gitlab.com/group-07/intelligent-robotics/
[9] Random word generator: https://randomwordgenerator.com/sentence.

php

https://drive.google.com/file/d/0B2AcDRX3bKLVdjhPU1B2UUNRaDA/view?resourcekey=0-fKWCpCO1UiiQgNNGGzMlPA
https://drive.google.com/file/d/0B2AcDRX3bKLVdjhPU1B2UUNRaDA/view?resourcekey=0-fKWCpCO1UiiQgNNGGzMlPA
https://drive.google.com/file/d/0B2AcDRX3bKLVdjhPU1B2UUNRaDA/view?resourcekey=0-fKWCpCO1UiiQgNNGGzMlPA
https://gitlab.com/group-07/intelligent-robotics/
https://randomwordgenerator.com/sentence.php
https://randomwordgenerator.com/sentence.php

	Introduction
	Related work
	System/Framework description
	Text-to-speech functionality
	Localization using the Monte Carlo Localization algorithm
	Path-finding using A*
	Integrating in ROS

	Experimental Setup and Results
	Testing the accuracy of our particle filter
	Testing the accuracy of the text-to-speech assistant
	Testing the functionality of the A* path-finding algorithm

	Conclusions and Future Work
	References

