
Team Paradroid

Snake PVP

Introduction 4

Requirements 5

UI Requirements 5

Map Requirements 5

Game Logic Requirements 6

Single Player Requirements 7

MultiPlayer / Networking Requirements 8

Shop Requirements 8

Audio Requirements 9

Non-Functional Requirements 10

Software Design 11

Game Objects and Logic 12

Game objects 12

Snake 12

Map 12

Fruit and PowerUps 13

Artificial Intelligence 13

Map Builder 13

Shop 13

Audio Controller 13

FXML 14

Rendering 14

MultiPlayer 14

Interface Design 16

Interface Design Overview 17

Main Menu 17

Singleplayer / Multiplayer Selection Screens 18

The Game 20

The Shop 22

Map Builder 24

Audio 25

Software Engineering Processes and Methodology 26

Risk Analysis 29

Evaluation 31

Team Paradroid - Snake PVP

Strengths 31

Weaknesses 31

Additional features 32

Summary 33

Teamwork 34

Individual Reflections 35

Daniel Batchford 35

Florian-Andrei Blanaru 36

Mohammed Jaber Alqasemi 37

Yuji Fukuta 38

Rahul Gheewala 39

Dilpreet Kang 40

Appendix 41

Software Principles and Coding Standards 41

Test Report 42

Introduction 42

Goals 42

Approach 42

Constraints 42

Testing Timeline 43

Testable Features 43

Pass / Fail criteria 43

Estimates 44

Responsibilities 44

Unit Testing 44

server.ai 44

server.game 46

Black Box Testing 49

Game Logic 49

Networking 51

UI 52

AI 55

Build A Map 55

Audio 56

Shop 57

User Testing 58

User 1 - (Non Gamer) 58

User 2 - (Gamer) 59

Testing Evaluation 60

2

Team Paradroid - Snake PVP

Subsystem UML Diagram 61

Individual Contributions 67

Assets and References 68

Gitlab Link 68

3

Team Paradroid - Snake PVP

Introduction

Our proposed game combines the iconic features of the classic Snake game with powerups,

allowing for two players to battle it out to be the last snake standing.

Upon starting the game, the player is presented with the option to play against an AI or against

another player. This provides both a multiplayer competitive mode and a single player mode

against a programmed AI. In both cases the core of the game logic involves eating a piece of

fruit to increase your own length and decrement your opponent’s length. If either snake bumps

into the other or into a wall they will respawn and decrease in length. Once the player's length

reaches zero, they lose a life. A player wins once they have caused the other player to run out

of lives.

The single player mode features an AI controlled opponent. The AI has three levels of difficulty:
Easy, Medium, and Hard. This allows a player to select a difficulty based on their skill level.

The maps within the game are created by the developers, randomised, or created by the player.
The pre-made maps include a wide variety of difficulties with maps such as ‘The Great Divide’,
which provides little challenge, whereas maps such as ‘Classic Pacman’ offer a higher level of
difficulty. Each map contains wall objects, randomly spawned food objects and power ups. The
power-ups add more depth to the game allowing players to strategize the optimal way to reach
the fruit before their opponent. Power-ups include: Freeze, Mine, Controls Inverter, Wall Skip,

Boost, and a Coin. Additionally, every map has the ability to wrap around the edges onto the
other side adding another mechanic the player can use to their advantage. The view of the map
will be from a top-down perspective, similar to the classic snake and pacman games.

The game also includes a shop with various skins on offer for both snakes and maps. Players

can earn money by winning games or receiving the Coin powerup. This money is added to the

player’s balance allowing them to purchase skins. We also included a map builder where

players can build their own maps to play, in both single player and multiplayer modes.

The target demographic for the game is the general public, as it has a simple concept which is

easy to grasp and become familiar with. Both Snake and Pacman are well known games which

have been around for decades - we believe the vast majority of the public are aware of these

games.

4

Team Paradroid - Snake PVP

Requirements

These requirements were produced in week 2. We felt it was important to produce these

requirements early, allowing our team to have a clear idea of the scope of the game, the

essential features and the game logic. They were later appended as the game developed.

UI Requirements

1. The program MUST implement a main screen

1.1 The main screen MUST have an option to play in single player mode

1.2 The main screen MUST have an option to play in multiplayer mode

1.2.1 There MUST be an option for 2 players playing on a local network

1.3 The main screen MUST have an option to quit the game

1.4 The main screen MUST have an ‘Audio Settings’ option

1.4.1 The settings MUST have a music volume slider

1.4.2 The settings MUST have a sound effects volume slider

1.4.3 The settings MUST have an option to mute all audio

1.5 The main screen Fonts MUST be at minimum 12pt

1.6 The main screen SHOULD have a minimum screen size of 1550px * 800px

1.7 The main screen COULD display a balance if the shop is implemented

1.8 The main screen COULD have a ‘Build A Map’ Option

1.9 The main screen COULD have a ‘Shop’ Screen

1.10 The main screen COULD have an option to enter and exit full screen

1.11 The main screen COULD have an option to choose a window resolution

Map Requirements

2 The game must include a map

2.1 The map MUST have 2 respawn points

2.1.1 The respawn point MUST have at least 2 empty spaces above the player

2.1.2 The player SHOULD always be facing up when respawning

5

Team Paradroid - Snake PVP

2.1.3 The respawn point COULD be randomized point on the map

2.2 The map MUST spawn a fruit at a random coordinate when game starts

2.2.1 The spawn MUST not overlap a wall

2.2.2 When a player picks up a fruit, the fruit MUST spawn at another random coordinate

2.3 The map MUST have a randomly generated map feature

2.3.1 The inner walls MUST not occupy more than 12% of map space

2.4 The map SHOULD allow a player to enter through one side of the map’s outer wall and reappear

from the opposite side

2.5 The map SHOULD have a size of 30*30 cells

2.6 The game COULD have a map building feature

2.6.1 The map builder SHOULD have a reset button that removes all walls

2.6.2 The Map Builder SHOULD reflect the map using the selected custom map skin

2.6.3 The map builder MUST allow the user to set walls

2.6.4 The map builder MUST allow the user to remove walls

2.6.5 The custom Map MUST be saved locally.

2.6.6 The user COULD have an option to remove a map

2.6.7 The user COULD be able to rename map/provide a name if does not already exist

2.7 The map COULD spawn powerups

2.7.1 The powerups MUST randomly spawn at the start of a game

2.7.2 A powerup MUST be respawned on the map after a player uses it

2.7.2.1 The powerup SHOULD be a new random powerup

Game Logic Requirements

3 The game MUST include 2 snakes in each game mode

3.1 The snake size MUST be the same number of units as AI when game is initialized

3.1.1 The default size SHOULD be 5 units when game begins

6

Team Paradroid - Snake PVP

 3.1.1.1 Initially, when the player respawns, the player and AI SHOULD occupy 1 unit and

 increases by 1 every movement until the expected size is reached

 3.1.2 The user COULD choose a preferred initial snake size

3.2 The game MUST follow a snake like logic

 3.2.1 If a snake touches a wall, the snake MUST respawn

 3.2.2 If a snake touches a wall, the snake MUST lose a life

 3.2.3 if a player’s size reaches 0, the player MUST respawn

 3.2.4 if a player’s size reaches 0, the snake MUST lose a life

 3.2.5 if a player loses all lives, the game MUST end and the opponent MUST win

 3.2.6 If a snake touches a fruit, the user’s snake size SHOULD increment by 1

 3.2.7 If a player’s snake touches a fruit, the opponent’s snake size COULD decrement by 1

 3.2.8 If a snake touches a wall, their initial size COULD decrement by 1 unit

3.3 The player MUST have controls to dictate movement of snake

 3.3.1 Pressing UP arrow key MUST make the snake go UP until further interrupt

 3.3.2 Pressing DOWN arrow key MUST make the snake go DOWN until further interrupt

 3.3.3 Pressing LEFT arrow key MUST make the snake go LEFT until further interrupt

 3.3.4 Pressing RIGHT arrow key MUST make the snake go RIGHT until further interrupt

3.4 The game MUST grant each player 3 lives

Single Player Requirements

4 The game MUST include a single player mode.

4.1 This mode MUST include 3 game levels (EASY, MEDIUM, HARD)

4.1.1 The difficulty SHOULD determine AI intelligence

4.2 This game mode MUST use an AI bot

4.2.1 The AI MUST have 3 difficulty levels corresponding to the 3 game difficulties.

4.2.2 The AI MUST be sufficiently challenging for a player at each difficulty level.

4.2.3 The AI MUST not have access to information unavailable to the opponent, for fairness.

7

Team Paradroid - Snake PVP

4.2. The AI SHOULD appear to behave in a “player-like” fashion

4.2.2.1 The AI SHOULD not move in a “jagged” path across the map

4.3 The AI COULD consider targeting powerups

4.3.1 The AI COULD be able to use these powerups

4.3.2 The AI SHOULD use these powerups in useful moments

4.3.3 The AI SHOULD decide between targeting a fruit or powerup

4.3 The player COULD have the option to play with custom map

4.3.1 All custom maps SHOULD be selectable in a drop down list

4.4 When a round finishes, the game SHOULD display a message saying if the player won or lost

4.4.1 The game COULD award coins depending on the number of fruits picked up

4.4.2 The game COULD have a coin multiplier depending on game difficulty

MultiPlayer / Networking Requirements

5 The game MUST include a multiplayer mode, over localhost

5.1The player MUST have an option to host a game

5.2The player MUST have the option to join a game

5.3The host SHOULD have the option to choose custom map

5.4The host SHOULD have the option to choose the number of lives to start with, for both players

5.5The game COULD allow players to use an in game chat messaging system

5.5.1 The chat system COULD block potentially offensive words

5.5.2 The chat system COULD prevent a user from spamming the chat

Shop Requirements

6 The game COULD include a shop feature.

6.1The game MUST have an in-game currency

6.2The game MUST display this balance to the user

6.3Players MUST be able to select a skin

8

Team Paradroid - Snake PVP

6.4 The game MUST assign the default skin if no skin is selected

6.5 The game MUST warn the user if there are insufficient funds to buy a skin when attempted

6.6 Each skin MUST have a cost to buy

6.7 The shop MUST offer a variation of unlockable snake skins and map skins

Audio Requirements

7 The game MUST include audio

7.1 The audio engine MUST allow audio to be controlled

7.1.1 The audio MUST allow muting of audio

7.1.2 The audio SHOULD allow the volume of audio to be changed

7.1.3 The audio COULD allow playback of music to be paused and resumed

7.1.4 The audio COULD be able to load different sound packs during runtime

7.2 The game MUST have sound effects

7.1.1 The game SHOULD have a sound for: Collecting a fruit.

7.1.2 The game SHOULD have a sound for: Collecting a coin

7.1.3 The game SHOULD have a sound for: Collecting a powerup

7.1.4 The game SHOULD have a sound for: Using a powerup

7.1.5 The game SHOULD have a sound for: Crashing into a wall

7.1.6 The game SHOULD have a sound for: Losing a life

7.1.7 The game SHOULD have a sound for: Game start

7.1.8 The game SHOULD have a sound for: Clicking

7.3 The game SHOULD have background music

7.2.1 The game MUST have a sound for: Menu music

7.2.2 The game MUST have a sound for: Game music

9

Team Paradroid - Snake PVP

Non-Functional Requirements

8.1 The user interface MUST run smoothly

8.1.1 The user interface MUST load all assets quickly.

8.1.2 The user interface SHOULD be easy to use and understand

8.1.3 The game SHOULD follow a consistent UI theme throughout all menus

8.1.4 The game SHOULD reach the Main Menu within 5 seconds of launching.

8.1.5 Each sub-menu SHOULD load within 1 second of clicking its button.

8.2 Image files MUST load in a reasonable amount of time

8.2.1 Image files MUST have a sufficiently high resolution as to not appear blurry.

8.2.2 Image files MUST not contain copyright infringed material

8.2.3 Snake Skin images MUST be at least 100 by 100 pixels in size.

8.2.4 Map Skin images MUST be at least 100 by 100 pixels in size.

8.2.5 Shop images SHOULD load within 100ms selecting a skin.

8.3 The game state MUST be consistent over both clients in multiplayer

8.3.1 One player SHOULD not have a significant advantage due to networking in multiplayer

8.4 The AI MUST behave in a human like fashion

8.4.1 The AI MUST not have access to information the player does not have

8.5 The game MUST be implemented in Java

8.5.1 The game SHOULD be easy to launch to a user with no programming experience

8.5.2 The game SHOULD should not be built for a single operating system

10

Team Paradroid - Snake PVP

Software Design

Figure 1: Component Diagram

The component diagram (Figure 1) shows the main classes of the game and their relationships

while the class diagrams (Figure 11-17 in the Appendix) give insight into how these classes

communicate with others in their packages.

The Main Menu is called from the MainClient class once it is started. The MainClient class

contains the main() method called by the JVM on program execution. As the player chooses

one of the Menu options (Audio Settings, SinglePlayer, MultiPlayer, Shop, Build A Map or Quit)

they are directed to the selected scene and are provided with their respective features. Each

feature has classes grouped into packages which handle the appropriate logic for the scene

(e.g: SinglePlayer uses the game and ai packages, Audio uses the AudioSettings class). We

11

Team Paradroid - Snake PVP

have chosen this approach as we believe it makes it easier for us as developers and anyone

that wishes to read the code, to understand. It also provides us an effective way of connecting

the various components of the game.

In addition to this, we have also created custom Exception classes to handle cases where the

code is unable to run properly (NoPathFoundException, MapImageLoadException).

Interfaces were also used to help increase the modularity of our software design, as well as for

the purpose of declaring constant variables, such as resource path constants, game objects

constants or AI constants and methods.

Game Objects and Logic

The Game logic and objects of the game reside in the ‘game’ package, which is then divided in

‘managers’, where the Snake, Map and PowerUp classes are, and ‘usables’, which holds the

Coordinate class and the Direction enum, which are necessary for the creation and usage of the

classes from the ‘managers’ package.

The controls of the playerSnake are handled in the start() method of the SinglePlayer class,

where the player can choose the direction they want to go, or use a collected PowerUp.

Game objects

Snake

The main focus of our game, the Snake class has two subclasses: the PlayerSnake

class, which is used for both the singleplayer and multiplayer modes, and the AISnake

class, which overrides the updateSnake() method in order to use the AI component of

the game.

The SnakeSkin and SnakeSkinManager classes are used to load and assign skins to the

snake object (from the Shop feature). Here is also where the collisions are handled (fruit,

powerups, walls or snakes).

Map

Similar to the Snake class, the map class uses MapSkin and MapSkinManager to load

and assign skins, as well as a MapManager class where all the custom maps are

loaded. This class provides the drawMap() method which handles the rendering of the

map and power ups..

A map object can contain randomly generated walls using the generateRandomWalls()

method. The maps are saved and loaded in a .txt format, by using various characters for

every object, which are then translated into a BoxStatus enum (e.g. BoxStatus.WALL,

BoxStatus.EMPTY).

12

Team Paradroid - Snake PVP

Fruit and PowerUps

The Fruit and the PowerUps class serve as the means of winning the game. Two

PowerUp objects spawn randomly and as they are collected, the player is presented with

the option to use them whenever they choose to do so. The other classes in the

PowerUpsManager package are used for the execution of said PowerUps, and therefore

do not extend the PowerUp class.

Artificial Intelligence

The AI is divided in two packages: ‘pathfinding’ and ‘util’ which are used together for the

functionality of the AISnake class. The pathfinding package provides the means for the AI to find

paths on a grid with blocked squares. This class allows a snake to navigate to a target square,

which is selected based on the difficulty. In easy and medium modes, this target square is the

Fruit on the map. In hard mode, this target square is either a fruit or a square in front of the

enemy (allowing the ai’s snake to “cut off” the player’s snake). A Node class is used to

represent a node, with f, g and h values, a parent node and the node’s walkable status stored to

allow A* pathfinding. A NodeGrid class is used to store a graph of nodes. The pathfinding code

is called exclusively from the AIHandler class.

This feature is only available in the SinglePlayer mode and, by using the Difficulty enum, the

player can choose how difficult they want the AI to be (Easy, Medium or Hard).

Map Builder

Another feature of the game is the Map Builder, where the player can build maps for later use

by clicking on the tiles they wish the walls to be on. These maps are then saved in the same .txt

format as those created by the developers. The whole process is handled in the BuildAMap

class, part of the ‘handlers’ package. This class contains methods to update UI based on the

status of the map building process. It also handles writing the map to a text file based on the

current map shown to the user by the UI.

Shop

Each Snake and Map object has a SkinManager and Skin class. The Shop class provides the

option to buy and equip new sets of skins using the in-game currency that is provided. Both the

data that saves information on whether the player has acquired a skin and the amount of money

they have is stored in a .txt file using the FileHandler class. Players can gain money by picking

up Coin or Fruit objects.

Audio Controller

AudioController is the class that handles the background music (through the startMusic()

method) and the sound effects of the game (deathSound(), collectSound() etc.). These can all

13

Team Paradroid - Snake PVP

be muted or have their volume changed from the AudioSettings class. This has been done by

using JavaFX MediaPlayer. This class contains only static fields and methods, allowing the

controller to be called in all appropriate places in the program without passing around object

references. Having a static approach here is sufficient as only one instance of an effects

controller and music controller is needed when handling game audio. Using static fields and

methods here allows easier integration of sound effects into the correct classes.

FXML

FXML has been used for the User Interface. Using FXML allows easy alignment and design of

elements within the UI. FXML contains containers akin to HTML, allowing vertical and horizontal

alignment within groups of UI elements. Furthermore, by using the onAction parameter, we were

able to connect menu elements between each other and create a smooth and good-looking

interface.

Rendering

The JavaFX library has also been used for rendering, mainly the GraphicsContext class. The

drawMap() and renderSnake() methods are called on a separate thread to the game logic, to aid

with performance. The render thread calls these methods every 200 milliseconds, which is a

good balance between rendering the same game state too many times and not rendering a new

game state quickly enough.

MultiPlayer

For the multiplayer aspect of our game, we chose to use a client-server model. The server is

responsible for maintaining the game state which includes matters such as the locations of each

snake, the map being used and any collisions that may occur. The clients are responsible for

receiving data from the server, updating their own game states, and sending any changes back

to the server. A huge advantage of this model is that there will be only one game state stored on

the server, so the state for the clients will always be consistent with the state of the server. This

will therefore provide a reliable experience for both players, which we believe is important. If

each client had different game states, it would result in an unfair advantage for one player.

Additionally, this architecture means that the resources required are centralised on the server,

and therefore when a bug occurs within the networking it is a lot easier to find where it occurred.

In the future if we were to decide to add mechanisms to detect cheating, we believed this model

would provide us with the best foundation to do so. This is because all user requests to change

the game state are sent through the server and therefore code can be added to the server to

only allow legal changes. With architectures such as Peer-to-Peer this would be much more

difficult to implement as there is no server which can act as an overall authority.

However, we recognized a major disadvantage of this architecture, which is that there is a single

point of failure. The entire functionality of the multiplayer depends upon the server working

14

Team Paradroid - Snake PVP

stably - therefore if it were to go down or act unreliably it would result in the whole multiplayer

mode being dysfunctional. An alternative would be to use the Peer-to-Peer model to avoid this.

However, with this model if one machine is slow it slows down the other client which we

believed would be a greater disadvantage.

15

Team Paradroid - Snake PVP

Interface Design

Initially, before starting the UI design process, we decided to research the layout of several

games and assess pros and cons of each. We found a common theme in games with too many

menu options confusing and unattractive. To avoid this, we decided to minimise the number of

options, leaving only the essentials, to create a clean UI and create a clean UI for the user. We

decided to include the menu options SinglePlayer, Multiplayer, Shop, Build a Map, Audio and

Quit on the main screen. Each of these buttons leads to another UI screen, where it is easy to

return to the main screen. This avoided the inconvenience of the user having to restart the

game to access a particular page, an error which we had foreseen in other games.

In order to maximise productivity, we decided to take full advantage of the program

‘SceneBuilder’ which uses fxml files to create scenes. This served as a massive advantage as it

readily contained containers such as VBoxes and StackPanes to more easily align JavaFX

elements. We were also able to preview the UI without running the game. This was convenient

as we didn’t have to run the game between UI adjustments. It also allowed us to explore

different containers to see if one gave a better UI for the user than another. For example,

although buttons were useful and used throughout the UI, we found the use of sliders and

choice boxes convenient for some actions, such as for adjusting the volume and choosing a

map. Labels, text fields and checkboxes were also used throughout the UI where appropriate.

Though SceneBuilder provided us with a lot of benefits, it had a learning curve. Firstly, we had

not been taught about this in our course, so we had to follow several youtube videos to

understand the basics. Through videos, we learned how to link FXML documents to a JavaFX

project, the use of controller classes which contain the methods used by buttons and their

respective annotations. We ran into a major disadvantage during integration of the UI with other

team members. After our best efforts and plenty of research, we were disappointed to discover

that overlaying the game canvas over the fxml we had created wasn’t feasible. Therefore, we

solved this issue by manually laying out the actual game canvas and supporting UI inside of

Java source code. To give a seamless feel to the game such that the java files and fxml files are

interconnected, we emulated the previous pages by using the same buttons, styling and

background. However, we were not able to reap the rewards of SceneBuilder with this

methodology. However, it did let us appreciate how to work with JavaFX elements manually and

without the help of FXML and SceneBuilder.

Although we were aware cosmetics were not too important in collecting marks for the

assessment, we felt it was necessary to create a clean looking design. We were able to

experiment with several different techniques, but for us it was experimenting with css which we

feel brought our game to life. Through the use of css, we were able to create buttons which

provided an indication as to which option was highlighted. This meant the user could have full

confidence that they had chosen the correct option and was unlikely to choose an incorrect

option. We also decided to add several of our own designs to again add a personalised feel to

the game.

16

Team Paradroid - Snake PVP

Interface Design Overview

As we agreed to make the game menu simple and convenient, we created six main screens.

We did not create a user guide or tutorial for this game when it is launched, instead opting for a

more minimalistic design.

Main Menu

Figure 2: Main Menu Screen

The main menu screen initially starts with an introduction video. This video was carefully

produced such that the final video frame matches the main menu layout, allowing a seamless

blend into the ui once the intro video ends. The user is then displayed the main screen. This

screen contains buttons to navigate to different screens within the game, as well as the current

balance of the user. A graphic is used for the background, which is continued throughout the

other game screens.

17

Team Paradroid - Snake PVP

Singleplayer / Multiplayer Selection Screens

Figure 3: Singleplayer Selection Screen

Figure 4: Multiplayer Selection Screen

For this feature, we created three different modes for single player. The mode difficulty dictates

the intelligence of the AI and players can choose their own difficulty before starting a game.

Originally, we did not have instructions for the player but we later added this, based on user

18

Team Paradroid - Snake PVP

feedback. We then implement the three difficulty buttons as well as a choice box which lets you

load a custom map (either developer made or made in the map builder.) If a map is not selected

then the map will be randomly generated. Random maps initially had a lot of bugs such as the

wall being next to or over a respawn point.

For the multiplayer game screen, we used the base game selection screen created for the

single player mode, with the option to create a game, host a game and choose an initial number

of lives, between 1 to 5.

19

Team Paradroid - Snake PVP

The Game

Figure 5: Singleplayer Game Screen (Default snake skin, 3rd map skin)

Figure 6: Singleplayer Game Screen (Snake skin 2, map skin 2)

20

Team Paradroid - Snake PVP

Figure 7: Multiplayer Game Screens

The game screen features a canvas centered in the window, which displays the game. We

display the balance in the upper right corner at all times, to allow a player to see how their

balance is increasing during the game. We also show the player’s lives in both singleplayer and

multiplayer, and the AI's lives in singleplayer. This indicates the game’s current progression and

allows the player to see if they are winning or losing. Alongside these elements, in singleplayer,

we included a few controls - namely “back”, “pause”, “reset” and “choose custom map”. These

options are self descriptive. “Choose custom map” allows a player to load a custom map, either

developer made or player made. During testing during development, we found that the game

started too soon once a difficulty was selected. We therefore decided to add a 3 second

countdown timer before a game starts. Additionally, the UI’s background colour is chosen based

on the currently selected map skin, allowing the game canvas to blend into the rest of the UI in

an aesthetically pleasing fashion.

21

Team Paradroid - Snake PVP

The Shop

Figure 8: Shop Screen

From a very early stage of development, we decided that we had a couple of options of

measuring a player’s progress. We considered a scoreboard system or an in-game currency. It

was only after careful consideration that we felt that a currency would be more appropriate to

our game model. We decided to take this route because we saw an excellent opportunity to

add the option for customisable skins and maps, which wouldn’t add too much extra work for us

but would add significant value to our game.

A player can acquire this currency by playing in either the Easy, Medium or Hard mode where

eating the item provides 10, 25, or 50 respectively to the player’s balance. We felt this was

optimum, because a player who has just begun playing can slowly raise their balance by taking

advantage of the Easy game mode. However, this has a time cost as each fruit only rewards

10. Alternatively, a player can play in the hard mode where they have the chance of collecting

fruits valued at a much higher value of 50, albeit in a much more difficult setting, as in this game

mode the AI snake travels the optimum path making it significantly harder for the user. On the

whole, players can expect to play approximately the same amount of time but challenge

themselves at their leisure. By accumulating the in-game currency, a player can enter the shop

where they have the option to purchase a selection of items, including both snake skins and

map skins. These skins are each accompanied with their own description.

If a player has sufficient funds, they are able to purchase an item and this is reflected through a

reduction on the current balance and a unique message telling the user that an item has been

purchased. If a player does not have sufficient funds but attempts to buy an item, a message is

delivered saying there are insufficient funds. At any given moment, a player is allowed to choose 1

skin and 1 map, and these can be equipped in any combination. If the player wants to revert

22

Team Paradroid - Snake PVP

to the default skin/map, this can easily be done by clicking on the default options, free of cost.

A player is always given the option to reequip a skin bought in the past if they do not wish to

use the most recently purchased. Due to the limited variety of skins, we did not feel it was

appropriate to add a refund button when the player could have reclaimed some funds spent for

a skin.

When we began programming the Shop, we met a few hurdles. The main one being, a player

could play for hours on end and upon closing the game, their in game balance is reset. We

understood this would be a major inconvenience and demotivate players to want to retain their

progress. After all, the game model relies heavily on incentivizing players to eventually collect

all the items available. To solve this issue, we decided to save the user’s progress using a text

file saved in the game’s directory. This file contains encodings such as FFTFT where each

character represents whether a player has bought an item or not. If a player decides to buy or

equip an item, it is compared with the current balance and whether the item is already owned -

the appropriate action is then taken.

Looking back at the Shop after completion, it appears to be a major success. The shop is fully

functional and easy to use. Many games use an in game currency to attract players and

create a form of loyalty to the game, in order to hold onto players. We feel we have achieved

this through making the items hard to earn, but definitely achievable.

23

Team Paradroid - Snake PVP

Map Builder

Figure 9: Map Builder Screen

Having completed the Shop, to continue challenging ourselves and to again improve user

experience through customisation, we decided to implement a map building feature.

Fortunately, the way the maps were written made the process a bit easier. Maps are written

using .txt files, 30*30 where a ‘0’ represents empty space and a ‘/’ corresponds to a block.

Therefore, we devised a GUI where clicking on the square of a gridpane represented a block or

space. Originally, we had encoded each block to a ‘G’ or ‘W’ where it represented ground and

wall, but eventually changed it to images of the skin currently equipped in the shop. This meant

the user could have a visual idea of what the map could look like in advance and tweak any

changes to their preference, before saving. We then implemented a choice box which contains

the list of all the custom made maps, as well as developer made maps. Unfortunately, due to

time constraints, we were unable to add a few extra features such as a check to see if a map

has been made where a fruit would be surrounded by walls, as well as maps containing dead

ends. To partially solve this issue, we provided a warning to aim not to produce maps which

contain dead ends. Additionally, due to time constraints, we were unable to add an option to

allow users to edit previously produced maps, or to delete a custom map.

24

Team Paradroid - Snake PVP

Audio

Figure 10: Audio Settings Screen

Our audio interface is fairly easy to understand. We set up two types of audio: music and effects.

We set the volume size for each of these sounds independently. In addition, knowing that the shop

feature uses text files to save currency values allowed us to easily save the music values in the

same data file. This allows game volumes to be saved after the game is quit.

We also linked a slide bar with the volume size. When the slide bar is moved, the volume will

change immediately to the current value on the slide bar. Effect volume can also be checked

when the apply button is pressed. We also added a mute feature which mutes both the

music and effect volumes.

25

Team Paradroid - Snake PVP

Software Engineering Processes and Methodology

Our team followed a waterfall development method. Initially, requirements were drafted in week
3. Then, our design was laid out. Our team produced the folders and packages with empty

classes. This allowed us to see which classes should extend others and where interfaces and

resources should be placed. Our layout allowed us to understand how the client and it’s

rendering should interact with the game logic and ai. Once this design was finalised, we

implemented the required code, using the initial requirements as a guide. Verification was then

performed through test classes, with both user testing for logic based classes and testing with

end users for ui and audio choices.

Initially, we set rough internal deadlines for the development process, using an Excel

spreadsheet. Deadlines could be marked off as they were achieved. We found this document

very useful as it allowed us to visualise our development process and assign team members to

specific tasks. These deadlines included deadlines for code integration (Week 3), testing (Week

8) as well as deadlines for compiling the final report and final presentation.

Our team met weekly on Mondays and with the TA on Thursdays or Fridays. Our Monday

meetings allowed everyone to share their progress and thoughts ahead of the rest of the week.

We then divided up items that needed to be focused on between team members. Having

meetings in this fashion gave each team member specific tasks that should be completed by the

end of the week. We found these meetings very valuable and continued to meet weekly

throughout the entire project.

Our team used Git for version control and collaboration. This allowed synchronization of the

code base. Without this, we would have struggled with version control and ensuring every team

member had the correct / latest version of the project. Furthermore, we used git branches to

implement features independently. These branches allowed us to work on a specific version of

the code while it was unfinished or buggy. Each team member either had their own branch or

shared it with another team member. When a feature was completed on a branch, this was

merged with the dev branch. Once dev compiled into a working version, this was merged with

the master branch.

The specific branches used are detailed below:
● master
● dev
● networking
● ui
● ai
● mechanics
● demo

(Note that the demo branch was used temporarily for the week 7 game demonstration)

26

Team Paradroid - Snake PVP

Some team members worked in pairs. Rahul and Yuji worked together on the UI, while Andrei

and Mohammed worked together on the game logic. Programming in pairs allowed us to

develop these features faster than otherwise, since errors in code from one member could be

detected from the other member more easily. We also assigned members to focus on different

areas of the game, as these could be implemented without code collision from other members.

These assignments were as follows:

● Daniel - AI
● Dilpreet - Networking
● Mohammed & Andrei - Game Logic
● Rahul & Yuji - UI & Audio

Once team members had finished with their areas of the game, they worked on other parts of

the code base. Towards the end of the development process, we all worked collectively on the

entire code base, using the weekly meetings to decide which features / bugs each member

should work on. For example, Daniel and Yuji completed the AI and Audio sections and then

went on to work on the singleplayer mode, file handling and ui features.

Our team used JUnit for testing. Test classes were used to test individual classes in the

codebase. This allowed changes to be tested before committing code, allowing bugs to be

detected before committing code to git. We achieved a high level of test coverage, giving us

confidence that testing was covering a sufficient amount of each class.

Logging was used throughout the project. Initially, we attempted to use log4j but failed to get it

working. Therefore, Daniel made a custom logging class, which formats errors / debug

messages in a similar way to the console. Logging helped us see where “rogue” print lines were

in the code, by displaying file, class and method names alongside the logged message. This

helped us debug our code much quicker than otherwise.

While we considered other game engines such as libgdx, we decided on JavaFX as our game

engine for a number of reasons. Our team was confident in using JavaFX given previous

experience of the engine in 1st year. Moreover, JavaFX makes implementing a UI fairly straight

forward while also allowing flexibility in our UI design. JavaFX FXML allowed us to design

scenes to our liking with the use of containers such as VBoxes and StackPanes. Using FXML

allowed us to keep UI layouts contained in their own layout files, preventing most styling options

from being controlled by the Java code itself. JavaFX also allows css styling, which was useful

when applying slider and button styles across the whole UI without repetition. For example, the

UI button style used css to modify the button blending mode to screen over the background -

this would otherwise have to be repeated for each button in the UI.

Weekly meetings with our TA allowed us to gain valuable feedback about our progress, changes we

need to make and deadlines to focus on. We also used these meetings to ask questions we

27

Team Paradroid - Snake PVP

had about the project. We then made it a priority to focus on the feedback given to ensure our

project was as closely aligned to the brief as possible.

We could have improved our methodology by being more careful of merge conflicts within git.

Often, these conflicts led to lost time during our development. This could have been avoided by

discussing more actively on specific files that were being worked on. Furthermore, mass

renaming files often led to conflicts - this could have been agreed on in advance to prevent

overwriting of another member’s work. We also could have utilised feedback from end users

such as friends or family at an earlier stage in the process, which would have allowed us to

develop based on this feedback. Game behaviour and the UI could have benefited from end

user feedback and this could have been acted on accordingly.

28

Team Paradroid - Snake PVP

Risk Analysis

Throughout the implementation of this project there were several occasions where we

encountered risks. However, we were able to overcome these potential problems through

careful planning and revising our existing strategies.

The first risk we encountered was that a majority of the team were unfamiliar with how to use Git

when working in a team. This posed a significant risk as it would be very difficult to produce the

project without the correct use of a version control system. Luckily, our team member Daniel

was confident using Git and had no problem helping others learn how to commit their work to

the repository. Furthermore, everyone was also willing to learn and use online resources to

overcome any difficulties they came across.

Another potential risk was the possibility of not meeting the deadline. We had several deadlines

to meet which were in week 3, week 7 and week 12. Meeting these deadlines whilst also

keeping on top of work from other modules could have been a major impediment. However, we

were able to effectively stay on top of this by carefully planning the project at regular intervals.

Firstly, every week we would have a team meeting discussing everyone’s tasks for the week,

any difficulties encountered, and other topics related to the progress of the project. These

meetings proved to be highly effective in keeping everyone motivated and on track. Having only

one meeting a week could have also been a risk as some might view it as not being enough

communication for such a large project. However, our team was highly adaptable meaning in

weeks where there was a deadline everyone was willing to attend an extra meeting. Also, all

team members were active on Discord so no one felt as if they had to wait a week until they

could discuss their issues. Lastly, we found the weekly TA meetings to be very effective in

keeping us on track as we wanted to ensure we had some progress to show each week.

An unforeseen risk we encountered was the integration of the multiplayer game with the main

UI. Originally the networking part of the project ran as three separate programs, one for the

server and two for the clients. This was so progress could be made on the networking whilst the

main UI was still being produced. One of the issues was that as each client program was calling

the launch(args) method of JavaFX, once it was integrated with the UI which also called

launch(args) an error occurred as the launch method cannot be called twice within the same

program. By removing the call to launch more errors were encountered caused by concurrency.

These were due to not being able to update the UI from a different thread. As the clients and

server depended on the use of threads this was a major cause for concern. However, we were

able to overcome this risk by researching different methods to integrate the network. In the end

we used the Platform.runLater() method to arrive at a fully integrated multiplayer game.

Deciding on a set of requirements is very important in projects as it provides a way to measure

whether the outcome fulfils the predetermined expectations. Therefore, a potential risk could

have been that our project deviated from what we originally planned. To mitigate this risk, we

ensured that our requirements were agreed by all members of the team, to ensure everyone

was happy with the expected outcome. We also kept requirements precise to ensure there was

no room for misinterpretation between team members, which could have led to problems arising

29

Team Paradroid - Snake PVP

in the future. We also considered the risk of becoming too focused on the initial requirements,

preventing us from coming up with new ideas or alternative game behaviour. To avoid this, we

kept the requirements flexible, meaning that if all team members agreed we could change the

requirements as we needed to.

One of our requirements was the addition of a shop for players to buy skins with money earnt

from playing the game. A risk associated with this was not being able to save the users

purchased skins so that they were able to retain their progress from previous sessions. One

idea was to create a database, but due to the lack of database experience in our team and the

time constraints we decided there were too many risks associated with it. So, in order to solve

this problem, we decided on using text files that were capable of saving which items had been

purchased and then reading this text file whenever needed.

Overall, there were many risks we encountered; however, we were able to either reduce the risk

posed by the problem or in some cases we were able to overcome the issue entirely. In future

projects we should refine and be specific about all functional requirements including the “could”

requirements. Additionally we should start the integration process much sooner to avoid

problems occurring later on in the development process.

30

Team Paradroid - Snake PVP

Evaluation

The team project has turned out to be quite successful, in our opinion. The game logic is solid,

the networking is very good, the AI is exceptional, and the user interface that connects all parts

of the game is remarkable and aesthetically pleasing. The game is up to the team’s standards

and has achieved all set out goals, all thanks to the high level of commitment of the team and

their previous programming experience.

Strengths

One of the main reasons that our team stayed on top of things is the realistic plan set early on.

Goals have been set for each week, splitting the work into sections, and assigning members to

each part. Deadlines were set for each part, and the work was always done on time. The

combination of a fair plan and sensible deadlines meant that there was no sudden shake up to

the workflow, resulting in a good level of productivity each week, with stress being kept at a

minimum.

A clear channel of communication was a key benefit to our team. With Discord being our

platform of choice, which many of us already used daily, getting in touch with others and

receiving a reply was much quicker than other means. This facilitated collaboration between

members and helped us save time. In addition, Discord was used to have an hour-long meeting

at the beginning of every week - this time was used to solidify the week’s plan and discuss code

implementations. Discord also served to quickly bring game bugs to light and assist members

with fixing them swiftly.

Another strength that the team possesses is the past experiences of its members. Everyone

proved to be quite competent at programming; moreover, all members have worked on at least

one of the parts required in the team project like artificial intelligence and networking. This

proved to be very useful and made the project proceed more smoothly. Additionally, the team

was able to make use of our good research skills to look for ways to code a feature, this cut

down on time used on experimenting instead of implementing.

Weaknesses

Even though our planning was concise, some issues were hard to anticipate. Due to the scale of

the project and the time frame, parts of the code were not as modular as hoped and took extra

time to reconstruct. On the other hand, other parts were too large in scale and would have taken

more time to reconstruct than we liked, therefore, they were left as is. Given more time, the

team could have implemented them in a better way. An example of which is the Singleplayer

and Multiplayer code for the Snake and Map, which needed to be coded differently in both

cases to account for networking in Multiplayer.

Another weakness that affected collaboration between members at the beginning of the project is

that most of the team had little to no experience with Git. This led to some wasted time early on due

to having to manually move code around - however, this only affected the first few weeks

31

Team Paradroid - Snake PVP

of development. Nevertheless, team members gained valuable experience from using Git, that

could be applied in future team and personal projects.

Additional features

Although the team is happy about the project’s current state, there are a few additions that

could be made to enhance the game even further.

An obvious upgrade would be adding more players to the game. In both singleplayer and

multiplayer, a new game mode could be added that utilizes the increase in player count. A “Last

Man Standing” mode that pits all players against each other would increase the competitive

aspect of the game.

A levelling system would fit nicely to the game’s reward system. As of now the only way to show

the time invested by a player in the game is the number of coins collected and skins bought.

Implementing a system that rewards the player for playing the game by giving them exclusive

unlockable skins based on a player’s level would be a nice addition to the game.

Currently, the enemy AI’s difficulty is scalable and it's able to target apples. However, at its

current state it’s not able to use any of the powerups on the map. Adding this functionality would

make the gameplay more interesting.

The team project was a great experience for everyone. Despite us starting with little to no

experience in game development, we were able to explore a new path of programming. The

team feels more confident in tackling future game projects and we realise the importance of

teamwork while working on a project of this scale. This project proved to all of us that it is not

hard to learn a part of programming we are not familiar with, and it can be achieved by spending

time on research and planning, and commitment to the project.

32

Team Paradroid - Snake PVP

Summary

To summarise, we have worked effectively and produced a final product that we are all satisfied

with. At the beginning of this project, we decided on a concept which we could achieve within the

12-week timeframe. Everyone came up with great ideas and we chose to make a game based on

Snake, adding our own original features. Despite the project being quite challenging due to the

COVID-19 pandemic, we have all tried our hardest to finish developing the game. Setting up weekly

team meetings helped to motivate us and the use of GitLab allowed us to track our progress. We

carefully split up the work equally each week which allowed us to stay organised. Furthermore, as

we all have different backgrounds everyone was able to share their knowledge meaning we have all

learnt many skills that are useful for software development.

In addition, we believe there were several aspects that we could have improved, given more

time. We could have extended the complexity of the game by adding more game modes,

including a levelling system, allowing for more than two players, and getting the AI to use

power-ups. Besides not getting to implement the aforementioned features, overall, we are

happy with our final project.

33

Team Paradroid - Snake PVP

Teamwork

Our team recognised the importance of collaboration on a project of this scale, so we laid out

the groundwork of our project at the start. That began with setting up a clear channel of

communication, the team’s preferred choice was voice calls via Discord. We chose to have an

hour-long online meeting at the start of every week, where each team member’s ideas and

thoughts were heard. All members attended every meeting and played a crucial part in the

project, offering valuable ideas and programming experience. Discord was also used to report

bugs, give feedback on work done by other members, and plan individual meetings between

team members.

Tasks were split fairly and according to each member’s preference; thus, the work was done

efficiently, and we were able to assist each other on the tougher parts. The team split the project

into four major sections: artificial intelligence, networking, game mechanics, and the user

interface. Every team member ultimately worked on at least two parts towards the end of the

project. Therefore, we believe everyone is familiar with the entire code base and it’s behaviour.

At the end of the first few weeks, the team worked on first choosing a game idea, then planning

folder layouts in the design phase. We then worked on integrating our code. After working on

independent branches for a short period, we merged the code into the dev branch and had an

initial working version. This gave us a massive improvement in our workflow and consequently

our productivity. Integration became much easier after the first working version and we

managed to maintain a working version for the rest of the development time.

Careful planning and team commitment resulted in exceptional team productivity - all members

contributed immensely and everyone got along very well. Work was always done on time and

team members supported each other with various issues and bugs they encountered.

34

Team Paradroid - Snake PVP

Individual Reflections

Daniel Batchford

I believe we worked very effectively as a team and I believe this is evident in our final game.

The team was very easy to work with and everyone got on very well. Our team worked

professionally and with motivation - tasks were completed on time and to a high standard, and

members were always willing to take on a new task. When code issues arose, team members

helped each other to resolve them, through discord. Team members were always willing to help

(even in the early morning hours!). I believe we communicated well as a team, in a professional

manner. Weekly meetings were effective and allowed us to plan for the week ahead. Everyone

contributed with ideas and questions about the development - these included current bugs,

potential future bugs and architecture decisions. Furthermore, the team came up with new ideas

throughout the project, which helped with the evolution of our game as well as our overall

motivation.

By tailoring tasks based on each individual's strength and knowledge of the task, we were able

to produce high quality work from each member. For example, I have had previous experience

writing a snake AI for a single player version of a game, so I tackled the AI task. This included a

pathfinding library which could handle wrapping around the edge of a grid, akin to a torus

geometry from a topological perspective. I wrote the behaviour of this AI and once this was

completed, I worked on implementing the single player mode alongside Rahul and Yuji. This

included multithreading the single player mode to help with performance, implementing UI

button behaviour in the game and adding new features such as a countdown screen. I also

helped Rahul with the Map Builder code and UI design. Next, I worked on the game logic by

optimising code written by Mohammad and Andrei. This included implementing a more OOP

focused approach to the Snake class, as well as writing code to allow communication between

the game logic and AI code.

I also worked on FXML and CSS styling with Rahul. I created the CSS styling for UI elements in

the game, such as sliders and buttons, as well as reorganising previous FXML documents by

organising elements in containers, allowing a resizable UI to format elements in a more

predictable way. Throughout the project, I also maintained the Git repo - this involved merging

branches on a regular basis as well as fixing merge conflicts which arose. Towards the end of

the project, I also wrote JavaDoc for the entire code base, test classes for the AI and an intro

video and main menu background.

At the end of the project, we all contributed to write sections of this report. I wrote the software

engineering processes section, the introduction section and the unit tests inside of the test

report.

I believe our individual contributions came together to form a great game. This was possible

because of our team’s willingness and hard work throughout the term.

35

Team Paradroid - Snake PVP

Florian-Andrei Blanaru

The team project was a quite intriguing experience. Working alongside all of Team Paradroid’s

members, I had the pleasure of developing my teamwork skills, as everyone was open-minded

and hardworking towards creating a product that, in the end we can all say that we are proud of.

I believe that using Discord helped us communicate effectively, as we had weekly meetings on

Mondays to sort our tasks for the week and a few spontaneous meetings to discuss problems

which needed our immediate attention. Everyone was open and happy to help whenever

needed, outside those meetings. All the team members solved their tasks efficiently and on

time, making the whole process run smoothly.

At the start of the project, we managed to agree quickly and efficiently on our project idea and

plan. Initially, our idea was not complex, but as everyone worked and got their parts done, we

were able to progressively add new features to the game, which proved to be an efficient way of

addressing the workload. Thus, we did not end up planning for features that we would have to

scrap because of time constraints, and we were able to add all our ideas to the game.

Mohammed and I agreed to work on the logic and mechanics of the game, which proved to be a

fruitful collaboration, as we were both able to build the basic structure of the game, so that the

rest of the team could start adapting their code on the one provided by us. Mohammed was

always open to discussion and provided useful ideas and solutions on how we could implement

and, later, improve the game.

I was directly involved in writing the code for collisions (with the walls, fruit, other snake, or

powerups), the random map generator and the powerups. I communicated constantly with the

team on what ideas we should implement and how, such that, in the end, everyone would be

happy with the result. I have also been actively open to help other teammates, which helped me

understand how other parts of the project worked and how they were brought together. This was

also enforced by the JUnit tests I conducted on the game features that Mohammed and I

worked on, which involved going through most of the code to write tests that could help us find

other bugs or coding aspects that we did not consider before.

In conclusion, I believe that the whole project went smoothly, as everyone was involved and

helpful towards building the best product we could, given the time and resources. All the team

members were motivated and dedicated towards our goal, which was one of the main reasons

we succeeded.

36

Team Paradroid - Snake PVP

Mohammed Jaber Alqasemi

The team project was quite the experience for me, there is much that I have learned from

working in a team. All team members spent a fair amount of effort on the game and improved it

to their best of abilities given the limited time. We all worked together very effectively; we were

able to collaborate more often given that Discord was used for communication. Issues that

arose were fixed quickly and efficiently, while team members provided support for anyone that

needed it. All major parts of the game were polished and up to a high standard due to the

team’s great programming experience.

I worked on a few different parts of the project, starting with game mechanics. Since this was

one of the very first parts to be worked on, this required a careful thought process to avoid

making foundational mistakes that could prove detrimental later. Thankfully, I was paired with

Andrei who I could share ideas with and hear his suggestions. We were swiftly able to construct

a good groundwork for displaying elements on screen using JavaFX, that is used throughout the

main game, the Map Builder, and the Shop.

Another major part which I worked on is Skins, which I believe is a major part that was reused in

all parts of the game. I created the code that loads Map and Snake skins from images; these

were later constructed into objects that are displayed in game. Skins are also part of the reward

system of the game, they can be bought and equipped in the shop for players to customize their

experience. I have also implemented the code that manages all new skins that are added to the

Map and Snake skin folders, this facilitates the process of adding new skins and allows the

game to be expanded easily if need be.

I also helped Rahul with integrating Map skins with the Map Builder, which made the Map

Builder retroactively update the map skin whenever the player equips a new map skin from the

shop. In addition, I updated the Map Builder code which on its initial implementation did not use

map background and wall skins, instead it used letters to differentiate between the two.

An additional part that I worked on that involves no coding was making the image files for the

skins and some audio sounds for the snake. The image files required combining, editing, and

resizing images. As for the audio sounds, besides looking for some that are suitable to the

game, I had to do minor editing such as trimming and equalizing.

I believe the team project was a success, everyone always finished their work and always

turned up on time, without the team’s efforts and contributions the game would not have been

possible.

37

Team Paradroid - Snake PVP

Yuji Fukuta

Through this group work, there were so many things that I have learned. This project was my

first huge project creating something from scratch, except what we did for the summer

bridgework. Everyone in this group was very motivative and in the coding part they gave me so

much advice. I was really surprised that all the members had creative brains which made the

game more enjoyable. I also enjoyed this project, especially achieving the part I have entrusted.

During this project I have worked on the User Interface and Audio mainly. In the week we

started, we have created a separate UI with Rahul and sum up to create a base for our game.

After that I have started linking music to the button and the screen. Adding new features was

very challenging for me, but as I got used to it, it took less time to research, however it was still

difficult to add something to the game during the whole project.

On the other hand, I worked on the read/write files. We are using the text files to save quite a lot

of stuff, for example mute selected, balance, music volume etc... so it needs to be loaded

whenever the value is needed. At the very end, I also make the Lives counter and result screen.

They were some bugs and took me a while to figure out all the features worked fine by adding it.

It was a great experience to touch the other fields which I did not write about. This gave me a

great idea of how the game works in the background and utilized the other people's codes.

The thing that made me most motivated was the meeting every week on Discord and checking

our progress. Discord was a great service to communicate with group members efficiently. We

also got a small group to complete those tasks and I worked with Rahul most of the time. He

was the best partner for me and gave me good advice. In addition these small groups make me

effective at the work and if I did not have someone to talk to then I don’t think I would manage to

finish it.

Working with Team Paradroid was enjoyable and a good experience. Everyone worked so hard

and ended up with the great game. However, I always feel my skills level is a bit behind

compared to everyone so this project was a good experience to improve my skills and would

like to continue improving in the future. Finally, I believe that everyone in this group did fair

amounts of work and I don’t think I could have worked comfortably without having this member

so I would like to say great thanks to everyone.

38

Team Paradroid - Snake PVP

Rahul Gheewala

I thoroughly enjoyed working with the other team members. I consider myself to be extremely

fortunate to be put in Team Paradroid, due to the fact everyone was highly motivated, self

driven and shared a common vision to produce a high quality and fully fledged game. The team

worked very smoothly all throughout, and I believe this was a result of not only the expertise of

the team, but the fact that we took full advantage of online services such as discord, google

services and git services. It was also noticeable how many of us sacrificed a lot of our free time

and worked non-office hours to help improve and develop the game.

In this project, I dedicated most of my time to the User Interface, Shop feature, Map Builder,

Audio, optimization of the game and reformatting of the whole project (such as rewriting code to

improve efficiency, reduce overall file size and optimize speed). From the very first week, I knew

designing and functionality is a strong suit of mine. For this reason, I decided to take upon the

task of constructing the base of the game where I added all the buttons and containers to at

least a sub working standard. From here, I continued to develop and improve the UI, taking on

the advice from my teammates and finally created a complete, minimalist looking UI which

serves all the functionality a user would require. As aforementioned, collaborating the code from

other team members was a challenge, but after trying multiple options I was able to do so

successfully and learn many skills in the process to become very proficient.

Being an avid gamer who plays many MMOs, I couldn’t imagine our game any other way than

having a Shop feature. I committed from a very early stage that I would go through the extra

effort of using File Handling techniques in order to save user progress. After completing the

base of the shop, I developed a currency which I linked to the game. With the help of

Mohammed, skins and maps were linked to the game code. Throughout the Shop’s

implementation, I further developed my logic skills and eventually created what I feel is a well-

developed shop which I hope will create an enjoyable experience from the user. The map

feature was another feature I was keen to work on, here I developed a working Map Builder but

with the help of Daniel and Mohammed I was able to improve the efficiency and linkage to items

in the shop. I also worked alongside Yuji where I helped to debug issues with the Audio and link

to the UI.

Aside from coding, I helped out in other areas of the report such as the requirements

specification and reporting of the features, designing as well as trying to help others in the team

whenever it was needed.

39

Team Paradroid - Snake PVP

Dilpreet Kang

I had a very enjoyable experience during this team project mainly due to how easily and

effectively the team worked together. Having weekly team meetings helped us to stay focused

and organised, allowing us to make progress smoothly. All team members were happy to help

even outside of normal working hours.

I took the opportunity to work on the networking aspect of the game, as it has always been an

area I wanted to learn more about. As this field was completely new to me, I had to spend a bit

of time researching the different ways of implementing a multiplayer game. During my research I

became familiar with object streams, sockets, and the importance of concurrency, which proved

to be helpful throughout the project. In the end I decided on a client-server model using a TCP

connection. As Andrei and Mohammed added game mechanics, I continuously incorporated the

new features into the multiplayer game. This was difficult at times, as aspects that would work

well in single player did not work as expected over the network. However, I was able to

overcome these setbacks by modifying the code or taking a different approach to the problem.

By the end of the project, I had designed and implemented a server class that could

communicate the game state between two players. I had also created a client class that was

able to send and receive game updates from the server.

As part of getting the multiplayer to work I had to work partially on the UI. This included adding

the relevant code to the buttons Rahul and Yuji had previously created. I also created new

dropdown menus to allow the host to choose a map and number of lives. This allowed me to

understand more about how the UI was designed and gave me an insight into FXML files.

Initially I was working on the networking through three separate programs, one for the server

and two for the clients. So, I also worked on integrating the multiplayer game itself with the UI.

Incorporating the shop with multiplayer was another part I worked on. As our game had

functionality for two players, we believed it was important to also allow the second player to be

able to unlock skins and save their progress. In order to do this, I created a file that tracked how

many clients were open in order to assign an ID to the player that was used to access their

shop.

Overall, everyone worked hard to produce the game and I believe this is reflected in the final

product.

40

Team Paradroid - Snake PVP

Appendix

Software Principles and Coding Standards

● We modified IntelliJ’s default code style to minimise spaces between methods

and rearrange fields based on their visibility.

● Naming Styles
○ Package names were lowercase (e.g. server.ai.pathfinding.finders,

server.game.managers.mapmanager)

○ Constants are typed in constant case (e.g

X_SCREEN_WIDTH, UPDATE_INTERVAL)

○ Class names and annotations are typed in upper camel case

(e.g AudioController, @Override

○ Methods and fields are typed in lower camel case (e.g

getSinglePlayer(), playerSnake)
● Field hierarchy

○ Public static fields
○ Package - private static fields
○ Protected static fields
○ Private static fields
○ Public fields
○ Package - private static fields
○ Private fields

● Method hierarchy:
○ Public static methods
○ Package - private static methods
○ Protected static methods
○ Private static methods
○ Public methods
○ Package - private static methods
○ Private methods
○ Getters, setters, toString(), hashCode(), equals()

● JavaDoc was used to annotate all public methods
● Where possible, inheritance was used to reduce the size of the codebase and enable

easier future expansion

● Interfaces were used in some packages to increase modularity
● Constants were stored in interfaces where possible for easy access throughout

the codebase

41

Team Paradroid - Snake PVP

Test Report

Introduction

The purpose of this test report is to demonstrate how the needs represented by the functional

and non-functional requirements have been met. Additionally, we aim to show that the

possibility of bugs arising once the game is distributed is low, and the game functions as users

would expect it to.

Goals

We aim to achieve a relatively bug free game. However, extreme edge cases that would arise

if a player purposely tried to break a game were deemed as being acceptable, given the time

constraints of the project. We instead focused on avoiding the game crashing and more

significant bugs which would affect gameplay and consequently the user’s experience.

Approach

Due to the nature of our game, we decided to take a largely black-box testing approach with a

lesser emphasis on white-box testing. Black-box testing allowed every member of the team to

test each component without needing to know about the underlying functionality. Additionally, it

allowed us to test the game as a whole and ensure individual features were working correctly

together. In order to do this, we created a pass/fail criteria with each test case representing a

functional requirement. As the project progressed, we were able to fill in the outcomes of the

tests and catch bugs early. For parts of the code that heavily relied on calculations or had many

boundary conditions we also used white box testing methods, to ensure the logic was correct.

For this we created J-Unit tests that were able to test a wide variety of cases and ensure

important methods work as they should. In these cases, we used J-Unit tests and we aimed for

at least 75% coverage.

Additionally, we used user testing to test the game. We curated a set of questions which gave a

broader look at the game. After working on this project for a significant amount of time, there is

a risk of becoming too used to how features should behave. By having user testing, we were

able to gain feedback we would otherwise have missed. User feedback was gained from a user

not familiar with games and one who was. This gave us a wider range of feedback which more

closely represents our target demographic. Specific user’s were kept anonymous, for privacy

reasons.

Constraints

Our main constraint with our testing approach was time. While more white-box testing would

give an improvement to our testing approach, it is more time consuming than black-box

testing. We wanted to focus this time on core functionality as opposed to unit tests.

Furthermore, white-box testing proved difficult with some classes, as they included JavaFX

components. These components proved hard to test and the introduction of javafx.swing was

needed to test some packages such as server.game.managers.

42

Team Paradroid - Snake PVP

Testing Timeline

Week 3 - Initial Integration - Initial black-box testing of core functionality.

In week 3, we aimed to have a fully integrated codebase. However, we failed to meet

this deadline so testing could not occur during this week. However, progress

screenshots were made which gave us an insight into the future direction of the project.

Week 8 - White-box & user testing

In week 8, we aimed to have white-box test classes for areas of the project which were

more predictable, such as the server.game.managers & server.game.ai packages.

While our testing did not yet achieve good coverage, it gave us an indication that these

packages worked as they were intended. All tests in these packages passed.

We also conducted user testing in this week, using a relative of a team member and a

flatmate of another member as test subjects.

Following this week, we continued aiming for a higher level of coverage for the

packages tested with white-box testing.

Week 12 - Final version - Black-box testing

During the final week, we conducted black box testing to ensure all core functionality

met the specified requirements. We also ensured all previous white-box tests passed

and ensured user feedback had been acted on.

Testable Features

Testable features included:
● Game mechanics
● AI behaviour
● Networking behaviour
● UI design and functionality
● Audio behaviour
● Shop functionality
● Map building functionality

Pass / Fail criteria

For unit tests, the pass and fail criteria is fairly straightforward, using the results of a JUnit test

to dictate whether a test passed or failed. However, for black-box testing, the pass-fail criteria is

far more subjective. If one team member believed a certain behaviour was a bug whereas

another believed it was expected behaviour, we simply cross referenced the actual behaviour

with the expected behaviour noted by the requirements.

43

Team Paradroid - Snake PVP

Estimates

White-box testing was fairly quick, as it can be run within a few seconds. For black-box

testing, we estimate that a full test of all the cases provided below will take roughly 1 hour.

More time was allocated towards testing in week 12, in line with our week 12 testing deadline.

Responsibilities

To ensure an equal workload, we dedicated testing of functionality to the user who wrote

that portion of code. For unit tests, we expected that each team member should write a

corresponding test class for each class that member created.

For black-box testing, we used a secondary opinion from another team member to help

reduce any subjectivity introduced with this type of testing.

Unit Testing

server.ai

Package Test Class Test Result Coverage

server.ai.pathfindin TestAStarFinder testSimplePath Pass 100%

g.finders

 testBlockedPath Pass

 testSemiBlockedPath Pass

 testComplexPath Pass

 testNotDisjointPath Pass

 testNullOriginNode1 Pass

 testNullOriginNode2 Pass

 testTwoLengthPath Pass

 testTenLengthPath Pass

 TestLongestPathFinder testSimplePath Pass 100%

 testBlockedPath Pass

 testSemiBlockedPath Pass

 testComplexPath Pass

 testNotDisjointPath Pass

 testNullOriginNode1 Pass

 testNullOriginNode2 Pass

44

Team Paradroid - Snake PVP

 TestTorusAStarFinder testSimplePath Pass 100%

 testBlockedPath1 Pass

 testBlockedPath2 Pass

 testSemiBlockedPath Pass

 testComplexPath Pass

 testNotDisjointPath1 Pass

 testNotDisjointPath2 Pass

 testNotDisjointPath3 Pass

 testNullOriginNode1 Pass

 testNullOriginNode2 Pass

 testTwoLengthPath Pass

 testTenLengthPath Pass

server.ai.pathfindin TestNode testGetNode Pass 81%

g

 testSetParent Pass

 TestNodeGrid testInvalidDimensions Pass 95%

 1

 testInvalidDimensions Pass
 2

 testNullDimensions Pass

 testNegDimensions1 Pass

 testNegDimensions2 Pass

server.ai.util TestUtil testGetDistanceA1 Pass 100%

 testGetDistanceA2 Pass

 testGetDistanceB Pass

 testGetDistanceC Pass

 testGetDistanceD Pass

 testGetDistanceE Pass

 testSubtract2DIntArra Pass
 y1

45

Team Paradroid - Snake PVP

testSubtract2DIntArra Pass
y2

testSubtract2DIntArra Pass
y3

testDotProduct2DIntAr Pass
ray1

testDotProduct2DIntAr Pass
ray2

testDotProduct2DIntAr Pass
ray3

testDotProduct2DIntAr Pass
ray4

server.game

Package Test Class Test Result Coverage

server.game.manage SnakeTests testSpawnSnake Pass 72%

rs.snakemanager

 testChangeSpawn Pass

 testUpdatePlayerSnakeA Pass

 testUpdatePlayerSnakeB Pass

 testHandleFruitA Pass

 testHandleFruitB Pass

 testHandlePowerUp Pass

 testFreeze Pass

 testWallSkip Pass

 testControlsInverter Pass

 testSetMine Pass

 TestSnakeSkinManager testInit Pass 85%

 testGetSnakeSkin Pass

 testGetSelectedSkin Pass

46

Team Paradroid - Snake PVP

 testGetSelectedSkinID Pass

 TestSnakeSkin testLoadingSkinsA Pass 100%

 testLoadingSkinsB Pass

 testLoadingSkinsC Pass

server.game.manage MapTests testMapFileRead Pass 80%

rs.mapmanager

 testGenerateMapAndGene Pass
 rateRandomWalls

 testGetX Pass

 testGetY Pass

 testSetXA Pass

 testSetXB Pass

 testSetYA Pass

 testSetYB Pass

 testGetMapValue Pass

 testSetMapValue Pass

 testGetMap Pass

 testSetMatrix Pass

 TestMapManager testInitAndCreateMaps Pass 100%

 testGetAllFileNames Pass

 testGetMap Pass

 testGetAllMaps Pass

 TestMapSkin testLoadingSkinsA Pass 100%

 testLoadingSkinsB Pass

 testLoadingSkinsC Pass

 TestMapSkinManager testInit Pass 100%

 testGetMapSkin Pass

 testGetAllSkins Pass

 testGetSelectedMap Pass

47

Team Paradroid - Snake PVP

 testGetSelectedMapID Pass

 testClosestBgColor Pass

 testClosestBgColorID Pass

server.game.manage PowerUpsTest testGetPowerType Pass 90%

rs.powerupsmanager

 testSpawnPowerUp Pass

 testDespawnPowerUp Pass

 testSetControlsInvertTimer Pass

 testGetControlsInvertTimer Pass

 testSetFreezeTimer Pass

 testGetFreezeTimer Pass

 testSetWallSkipTimer Pass

 testGetWallSkipTimer Pass

 testPlantMine Pass

server.game.usables CoordinateTests testGetY Pass 76%

 testSetY Pass

 testGetX Pass

 testSetX Pass

 testAddX Pass

 testAddY Pass

 testIsWalkable Pass

 testToIntArray Pass

 testEquals Pass

 testHashCode Pass

 testToString Pass

server.game FruitTests testSpawnFruit Pass 80%

 testDespawnFruit Pass

48

Team Paradroid - Snake PVP

Black Box Testing

Game Logic

Testing of game mechanics

49

Team Paradroid - Snake PVP

50

Team Paradroid - Snake PVP

Networking

Testing of the multiplayer aspect of the game

51

Team Paradroid - Snake PVP

UI

Testing of the user’s interaction with the game and menus

52

Team Paradroid - Snake PVP

53

Team Paradroid - Snake PVP

54

Team Paradroid - Snake PVP

AI

Testing the functionality of the AI

Build A Map

Testing the functionality of the map builder

55

Team Paradroid - Snake PVP

Audio

Testing the sound within the game

56

Team Paradroid - Snake PVP

Shop

Testing of the functionality and display of the shop feature

57

Team Paradroid - Snake PVP

User Testing

User 1 - (Non Gamer)

Question Response Action Taken

Do you think the game is Yes, but no explanation on An information screen was
easy to understand? controls and what the added to both singleplayer

 different items mean etc. and multiplayer modes

Do you think the game is Yes None

easy to play?

Do you find the menu items Yes - self explanatory and None

easy to use? lots of options

Do you think there is a good Yes with the 3 levels None

level of difficulty to the game?

Do you feel like there is No - it’s a bit boring.
enough incentive to keep

playing the game?

Did you encounter any bugs No - was all good None

whilst playing the game?

What do you think could be Maybe a leaderboard to We will consider adding this
changed about the game? make it more exciting. feature in a future version of

 the game, if there is enough

 time to do so

58

Team Paradroid - Snake PVP

User 2 - (Gamer)

Question Response Action Taken

Do you think the game is Yes, the main menu clearly None
easy to understand? explains everything needed

 to play the game

Do you think the game is Yes, the mechanics are None

easy to play? simple to understand

Do you find the menu items Yes None

easy to use?

Do you think there is a good Yes, the difficulties of the AI None

level of difficulty to the game? are very good

Do you feel like there is No after a short time playing, None
enough incentive to keep I unlocked most of the skins

playing the game? so there wasn’t much else to

 work towards

Did you encounter any bugs Yes, when I play on a custom Fixed this issue
whilst playing the game? map in single player there are

 no powerups on the map

What do you think could be More items in the shop and We will add more shop
changed about the game? multiplayer working on more versions in a future game

 than one PC version, time permitting.

 Making the game work on
 multiple PC’s would require
 networking outside of
 localhost, which we believe is
 too ambitious given the time

 frame.

59

Team Paradroid - Snake PVP

Testing Evaluation

In summary, we believe a combination of white-box, black-box and user testing gave us the

flexibility to test our work in the most efficient way. However, we believe that more white-box

testing would have been useful in order to anticipate future bugs earlier and before they were

pushed to version control. An improvement to the modularity of our game would have made it

easier to develop unit tests for certain components in our game. In the future, we would aim to

produce game components that are more flexible and therefore more testable. Looser coupling of

components would have also helped with detecting bugs that occurred due to testing.

However, due to the nature of the project, black-box testing is absolutely necessary in order to

produce a high quality game. A high quality game needs to not only have minimal bugs but

also a nice user experience. Black-box testing allowed us to test this experience from a

broader and more natural perspective than unit testing allows.

Overall, while our testing strategy was effective, it could be improved by increasing code

modularity through focusing more on testing during the earlier stages of development.

60

Team Paradroid - Snake PVP

Subsystem UML Diagram

Figure 11: Objects and Usables Class Diagram

61

Team Paradroid - Snake PVP

Figure 12: Snake Class Diagram

62

Team Paradroid - Snake PVP

Figure 13: Map Class Diagram

63

Team Paradroid - Snake PVP

Figure 14: Networking Diagram

64

Team Paradroid - Snake PVP

Figure 15: Handlers Class Diagram

Figure 16: PowerUp Class Diagram

65

Team Paradroid - Snake PVP

Figure 17: AI Class Diagram

66

Team Paradroid - Snake PVP

Individual Contributions

Name Contribution

Daniel Batchford 16.66%

Florian-Andrei Blanaru 16.66%

Mohammed Jaber Alqasemi 16.66%

Dilpreet Kang 16.66%

Yuji Fukuta 16.66%

Rahul Gheewala 16.66%

We believe that these contributions are fair, as we believe that each member submitted

an equal amount of work. All team members worked hard on the project throughout the

entire term and we believe this is reflected in the final game and report.

67

Team Paradroid - Snake PVP

Assets and References

● JavaFX 15.0.1 - https://openjfx.io/
● Junit 5.4.2 - https://junit.org/junit5/
● JavaDoc - https://docs.oracle.com/javase/8/docs/technotes/tools/windows/javadoc.html
● Pathfinding Library - https://github.com/danielbatchford/PathFinding

○ Note that this library was produced previously by a team member (Daniel

Batchford), although it was heavily modified to accommodate this project

● Music & Sound Effects - Elvira Burlacu - https://www.linkedin.com/in/elvira-burlacu/
○ Permission was verbally granted (Daniel Batchford knows Elvira Burlacu)

● Map Icons (Default Icons) - https://minecraft.fandom.com/wiki/Category:Icons
● Background image - designed by Daniel Batchford
● Intro video - designed by Daniel Batchford

○ Apple texture -
https://www.reddit.com/r/Art/comments/huktuk/apple_me_pixel_art_2020/

● Snake and map custom icons - designed by Mohammed Jaber Alqasemi

Gitlab Link

https://git-teaching.cs.bham.ac.uk/mod-team-project-2020/paradroid/-/tree/master

68

https://openjfx.io/
https://junit.org/junit5/
https://docs.oracle.com/javase/8/docs/technotes/tools/windows/javadoc.html
https://github.com/danielbatchford/PathFinding
https://www.linkedin.com/in/elvira-burlacu/
https://minecraft.fandom.com/wiki/Category:Icons
https://www.reddit.com/r/Art/comments/huktuk/apple_me_pixel_art_2020/
https://git-teaching.cs.bham.ac.uk/mod-team-project-2020/paradroid/-/tree/master

